On a Theorem of Halphen and its Application to Integrable Systems
نویسنده
چکیده
We extend Halphen’s theorem which characterizes the solutions of certain nth-order differential equations with rational coefficients and meromorphic fundamental systems to a first-order n×n system of differential equations. As an application of this circle of ideas we consider stationary rational algebro-geometric solutions of the KdV hierarchy and illustrate some of the connections with completely integrable models of the Calogero-Moser-type. In particular, our treatment recovers the complete characterization of the isospectral class of such rational KdV solutions in terms of a precise description of the Airault-McKean-Moser locus of their poles.
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملCoincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions
The purpose of this paper is to present some coincidence point and common fixed point theorems for multivalued contraction maps in complete fuzzy metric spaces endowed with a partial order. As an application, we give an existence theorem of solution for general classes of integral inclusions by the coincidence point theorem.
متن کاملHyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملThe Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کامل